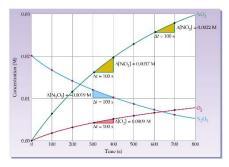
Chapter 14 – Chemical Kinetics

• 14.1 Factors that Affect Reaction Rates

- There are 4 factors that impact how fast a reaction will go:
 - 1. Physical state of the reactants
 - 2. Reactant concentrations
 - 3. Reaction temperature
 - 4. Adding a catalyst
- we will talk about these factors as we go through the chapter

• 14.2 Reaction Rates

- reaction rate = concentration change/time change
- the rate at which products are formed and reactants are consumed are connected
- general case: $aA + bB \rightarrow cC + dD$


$$Rate = -\frac{1}{a} \frac{\Delta[A]}{\Delta t} = -\frac{1}{b} \frac{\Delta[B]}{\Delta t} = \frac{1}{c} \frac{\Delta[C]}{\Delta t} = \frac{1}{d} \frac{\Delta[D]}{\Delta t}$$

where $\Delta t = t_f - t_i$, [A] is the concentration of A (moles/L) and $\Delta [A] = [A]_f - [A]_i$

- -- we loose reactants as products are formed which is why the rates of A & B are negative
- Example:

$$2N_2O_{5(g)} \to 4NO_{2(g)} + O_{2(g)}$$

Figure 12.1 & Table 12.1 from Chemistry by McMurray & Fay

TABLE 12.1	Concentrations as a F the Reaction 2 N ₂ O ₅ (s			
	Concentration (M)			
Time (s)	N2O5	NO ₂	02	
0	0.0200	0	0	
100	0.0169	0.0063	0.0016	
200	0.0142	0.0115	0.0029	
300	0.0120	0.0160	0,0040	
400	0.0101	0.0197	0.0045	
500	0.0086	0.0229	0.0057	
600	0.0072	0.0256	0.0064	
700	0.0061	0.0278	0.0070	

rate of decomposition of N₂O₅ =
$$-\frac{\Delta[N_2O_5]}{\Delta t} = \frac{-(0.0101 - 0.0120)\underline{M}}{(400 - 300)s} = 1.9 \times 10^{-5} \underline{M}/s$$

rate of formation of
$$O_2 = \frac{\Delta[O_2]}{\Delta t} = \frac{(0.00049 - 0.0040)\underline{M}}{(400 - 300)s} = 9 \times 10^{-6} \frac{\underline{M}}{s}$$

rate of formation of NO₂ =
$$\frac{\Delta[NO_2]}{\Delta t} = \frac{(0.0197 - 0.0160)\underline{M}}{(400 - 300)s} = 3.7 \times 10^{-5} \underline{M}/s$$

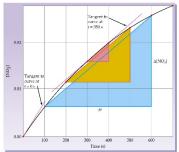
- Example: What is the rate relationship between the production of O₂ and O₃?

$$-\frac{1}{2}\frac{\Delta[O_3]}{\Delta t} = \frac{1}{3}\frac{\Delta[O_2]}{\Delta t} \rightarrow -\frac{3}{2}\frac{\Delta[O_3]}{\Delta t} = \frac{\Delta[O_2]}{\Delta t} \text{ or } \frac{\Delta[O_3]}{\Delta t} = -\frac{2}{3}\frac{\Delta[O_2]}{\Delta t}$$

- -- the rate of O₂ production is 1.5 times faster than the ate of consumption of O₃
- -- the rate of O₃ consumption is 2/3 times the production of O₂
- Example: The decomposition of N_2O_5 proceeds according to the equation:

$$2N_2O_{5(g)} \rightarrow 4NO_{2(g)} + O_{2(g)}$$

If the rate of decomposition of N_2O_5 at a particular instant is 4.2 x 10^{-7} M/s, what is the rate of production of NO_2 and O_2 ?


$$Rate = -\frac{1}{2} \frac{\Delta[N_2 O_5]}{\Delta t} = \frac{1}{4} \frac{\Delta[NO_2]}{\Delta t} = \frac{\Delta[O_2]}{\Delta t}$$

$$\frac{\Delta[NO_2]}{\Delta t} = \frac{4}{2} \frac{\Delta[N_2 O_5]}{\Delta t} = 2 \times 4.2 \times 10^7 \, \text{M/s} = 8.4 \times 10^7 \, \text{M/s}$$

$$\frac{\Delta[O_2]}{\Delta t} = \frac{1}{2} \frac{\Delta[N_2 O_5]}{\Delta t} = 2.1 \times 10^7 \, \text{M/s}$$

- But where does this rate come from?
 - -- a plot of concentration versus time

Figure 12.2 from Chemistry by McMurray & Fay

- we can use these plots to determine the concentration change over time
- average rate is found by taking the concentration change over a time interval
- instantaneous rate: is found by determining the slope of the line tangent to a particular time

• 14.3 Concentration & Rate Laws

- rate law: relates the reaction rate with reactant concentration
 - -- In general: Rate = $k[A]^m[B]^n$ for $aA + bB \rightarrow products$
 - --- where m and n are determined experimentally
 - --- k is called the rate constant
 - -- note the rate law is not related to the stoichiometry of the equation other examples:

$$\begin{split} 2N_{2}O_{5(g)} &\to 4NO_{2(g)} + O_{2(g)} & Rate = k[N_{2}O_{5}] \\ CHCl_{3(g)} &+ Cl_{2(g)} &\to CCl_{4(g)} + HCl_{(g)} & Rate = k[CHCl_{3}][Cl_{2}]^{\frac{1}{2}} \end{split}$$

- reaction order: the power to which a reactant is raised in the rate law equation
 - -- rate = $k[O_2][NO]^2$

for O_2 this power is 1 so the rate has a 1^{st} order dependence on $[O_2]$

for NO this power is 2 so the rate has a 2nd order dependence on [NO]

the overall reaction order is 1+2 = 3 or third order

-- in general, rate = k[A]^m[B]ⁿ

rate dependence on A is mth order, rate dependence on B is nth order and overall reaction order is m+n

Experimental Determination of Rate Law

- Example: Determine the rate law, the rate constant and the reaction orders for each reactant and the overall reaction order using the data given below.

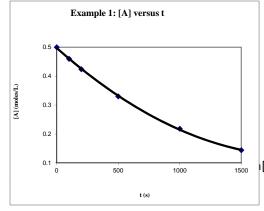
Experiment	[A] ₀	[B] ₀	Initial Rate $\left(\frac{M}{s}\right)$
1	0.100	0.100	4.0 x 10 ⁻⁵
2	0.100	0.200	4.0 x 10 ⁻⁵
3	0.200	0.100	16.0 x 10 ⁻⁵

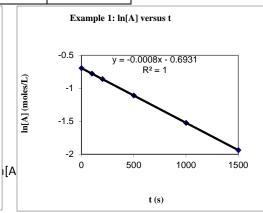
- -- comparing 1 & 2: doubling [B] has no effect on the rate therefore rate \propto [B] 0
- -- comparing 1 & 3: double [A] quadruples the rate therefore rate \propto [A]²
- -- rate = $k[A]^2[B]^0 = k[A]^2$

$$k = \frac{4.0 \times 10^{-5} \, M/s}{\left(0.100M\right)^2} = 4.0 \times 10^{-3} M^{-1} s^{-1}$$

-- A is 2^{nd} order and B is 0^{th} order, with an overall reaction order of 2

• 14.4 The Change of Concentration with Time


- we can monitor the concentration change as a function of time
- First-Order Reactions


$$rate = k[A] = \frac{-\Delta[A]}{\Delta t} \rightarrow \frac{\Delta[A]}{[A]} = -k\Delta t$$

$$\int_{[A]_0}^{[A]_t} \frac{d[A]}{[A]} = \int_{0}^{t} -kdt \to \ln[A] \Big|_{[A]_0}^{[A]_t} = -kdt \Big|_{0}^{t} \to \ln[A]_t - \ln[A]_0 = -kt$$

- $\therefore \ln[A]_t = -kt + \ln[A]_0$
- -- this is called the integrated rate law
- -- in order to get a linear relationship so we can find the rate constant k, we use ln[A]
- -- Example: Use the data below to determine if the reaction is first order and the rate law constant.

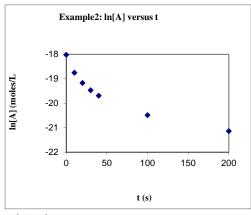
Time (s)	[A]	In[A]
0	0.5	-0.69315
100	0.46	-0.77653
200	0.424	-0.85802
500	0.33	-1.10866
1000	0.218	-1.52326
1500	0.144	-1.93794

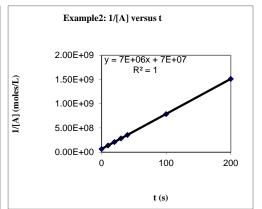
- half-life is the amount of time required for the original concentration of reactant to be reduced by half

$$\ln \frac{[A]_t}{[A]_0} = -kt \rightarrow \ln \frac{\frac{1}{2}[A]_0}{[A]_0} = -kt_{1/2} \rightarrow \ln \frac{1}{2} = -kt_{1/2} \rightarrow -0.693 = -kt_{1/2} \rightarrow t_{1/2} = 0.693/k$$

- Second-Order Reactions

$$rate = k[A]^{2} = \frac{-\Delta[A]}{\Delta t} \to \frac{\Delta[A]}{[A]^{2}} = -k\Delta t$$


$$\int_{[A]_{t}}^{[A]_{t}} \frac{d[A]}{[A]^{2}} = \int_{0}^{t} -kdt \to \frac{-1}{[A]} \Big|_{[A]_{0}}^{[A]_{t}} = -kdt \Big|_{0}^{t} \to \frac{-1}{[A]_{t}} + \frac{-1}{[A]_{0}} = -kt$$


$$\therefore \frac{1}{[A]_{t}} = kt + \frac{1}{[A]_{0}}$$

- -- in this case in order to get a linear relationship to determine k, we use the inverse
- -- Example: Use given the data below determine whether the rate law is first or second order and find the rate constant using the data below.

Time (s)	[A]	In[A]	1/[A]
0	1.50 x 10 ⁻⁸	-18.015	6.667 x 10 ⁷
10	7.19 x 10 ⁻⁹	-18.751	1.391 x 10 ⁸
20	4.74 x 10 ⁻⁹	-19.167	2.110 x 10 ⁸
30	3.52 x 10 ⁻⁹	-19.465	2.841 x 10 ⁸
40	2.81 x 10 ⁻⁹	-19.690	3.559 x 10 ⁸
100	1.27 x 10 ⁻⁹	-20.484	7.874 x 10 ⁸
200	6.60 x 10 ⁻⁹	-21.139	1.515 x 10 ⁹

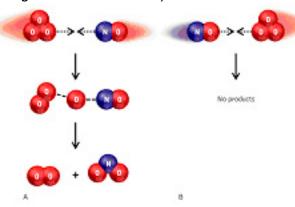
Since the inverse relationship is linear this reaction must be second order

- Zeroth-Order Reactions

$$rate = k = \frac{-\Delta[A]}{\Delta t} \rightarrow \Delta[A] = -k\Delta t$$

$$\int_{[A]_0}^{[A]_t} d[A] = \int_0^t -kdt \to [A] \Big|_{[A]_0}^{[A]_t} = -kdt \Big|_0^t \to [A]_t - [A]_0 = -kt$$

$$\therefore [A]_t = -kt + [A]_0$$


-- for this order we need only plot concentration of versus time to get a linear relationship

• 14.5 Temperature & Rate

- Arrhenius equation, $k = Ae^{-E_a/RT}$
 - -- k is the rate constant
 - -- A is the frequency factor

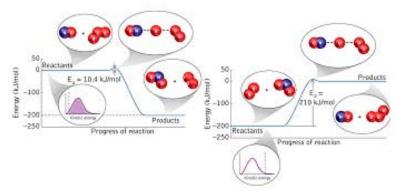

- --- product of collision frequency between reacting species and orientation factor
- --- not all collisions generate products some collisions are in the wrong orientation

Figure 14.16 from Chemistry: The Science in Context

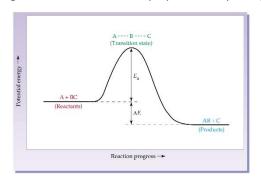
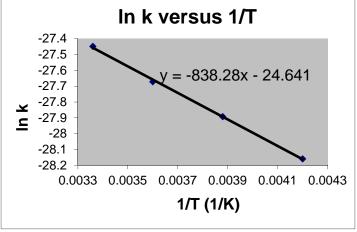

-- E_a, the activation energy: amount of E which must be overcome to generate products

Figure 14.17 from Chemistry: The Science in Context

- -- R is the gas law constant in Joules, R = 8.314 J/mol*K
- -- T is the temperature in K
- transition state is the activated complex formed in the course of a reaction

Figure 12.14 from Chemistry by McMurray & Fay

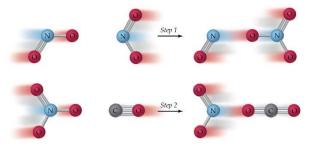

Using the Arrhenius Equation

- if we take the ln of $\,k=Ae^{-E_a\!\!\!/\!\!\!RT}$ we get $\ln k=-\frac{E_a}{R}\!\!\left(\frac{1}{T}\right)\!\!+\ln A$
- if we plot ln k versus 1/T we can use the slope and R to get $E_a \to E_a$ = -slope*R
- Example: Find the activation energy of for the $Br+O_3 \to BrO+O_2$ given the data below.

T (K)	k (cm³/molecule*s)
238	5.9 x 10 ⁻¹³
258	7.7 x 10 ⁻¹³
278	9.6 x 10 ⁻¹³
298	1.2 x 10 ⁻¹²

-- we need to make a plot of ln k versus 1/T

T (K)	1/T	k (cm³/molecule*s)	In(k)
238	0.00420	5.9 x 10 ⁻¹³	-28.1587
258	0.00388	7.7 x 10 ⁻¹³	-27.8924
278	0.00360	9.6 x 10 ⁻¹³	-27.6718
298	0.00336	1.2 x 10 ⁻¹²	-27.4487


-- E_z = -slope * R = -(-838.28K)*8.314 J/mol*K = 6969.5 J/mol or 6.7 kJ/mol

• 14.6 Reaction Mechanisms

- reaction mechanism: the way in which electrons move during a chemical reaction
 - -- how bonds are broken in reactants and reformed to products
- intermediate: species that is both produced and consumed in the course of a reaction doesn't partake in the rate law
- elementary steps: a step which takes place during a reaction
 - -- the stoichiometry of these steps may be used to get reactant order
 - -- molecularity: the number of reacting particles in an elementary step
 - -- overall sum of these steps leads to the overall reaction
- Example: NO₂ + CO:

$$\begin{array}{ccc} step1: & NO_2 + NO_2 \rightarrow NO + NO_3 & elementary \\ \underline{step2: & NO_3 + CO \rightarrow NO_2 + CO_2} & elementary \\ \hline & NO_2 + CO \rightarrow NO + CO_2 & overall \end{array}$$

Figure 12.10 from Chemistry by McMurray & Fay

- -- intermediate NO₃
- -- molecularity of both elementary steps bimolecular

Rate Laws and Reaction Mechanisms

Molecularity	Elementary step	Rate Law
Unimolecular	$A \rightarrow products$	Rate = k[A]
Bimolecular	$A + A \rightarrow products$	Rate = k[A] ²
Bimolecular	$A + B \rightarrow products$	Rate = [A][B]
Termolecular	$A + A + A \rightarrow products$	Rate = k[A] ³
Termolecular	$A + A + B \rightarrow products$	Rate = $k[A]^2[B]$
Termolecular	$A + B + C \rightarrow products$	Rate = k[A][B][C]

- Example: Determine the molecularity and rate law for each of the elementary steps.

$$H_2 + NO \rightarrow N + H_2O$$

 $N + NO \rightarrow N_2 + O$
 $H_2 + O \rightarrow H_2O$

Solution:

$$rate = k[H_2][NO]$$

 $rate = k[N][NO]$
 $rate = k[H_2][O]$

all the steps are bimolecular

Rate Laws for Overall Reactions

-rate-determining step: is the slowest elementary step which thereby limits the reaction rate

-- just like a relay race - if 3/4 runners are fast than the rate of the race is determined the slowest runner

step1:
$$2NO_2 \xrightarrow{k_1} NO + NO_3$$
 (slow) rate = $k_1[NO_2]^2$
step2: $NO_3 \xrightarrow{k_2} NO + O_2$ (fast)

- What if we go backwards with the above reaction? How do we handle that?

step1:
$$NO + O_2 \xrightarrow{k_1} NO_3$$
 (fast)
step2: $NO + NO_3 \xrightarrow{k_2} 2NO_2$ (slow)

-- when a fast step preceeds the slow step we assume the fast step is in eq or reversible

step1:
$$NO + O_2 \xrightarrow{k_1} NO_3$$
 (fast)
step2: $NO + NO_3 \xrightarrow{k_2} 2NO_2$ (slow)

-- we can then write the rate of step1 as rate $=k_1[NO][O_2]=k_{-1}[NO_3]$ solving for $[NO_3]$,

$$[NO_3] = \frac{k_1}{k_{-1}}[NO][O_2]$$

-- the rate for step2: rate = $k_2[NO][NO_3]$, we can plug in the relationship from step1 into this equation:

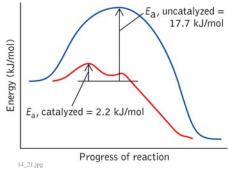
$$rate = k_2[NO] \frac{k_1}{k_{-1}}[NO][O_2] = k_2 \frac{k_1}{k_{-1}}[NO]^2[O_2]$$

- Example: The rate laws for the thermal and photochemical decomposition of NO_2 are different. Which of the following mechanisms are possible for thermal and photochemical rates given the information below? Thermal rate = $k[NO_2]^2$

Photochemical rate = $k[NO_2]$

$$\begin{array}{c} NO_2 \xrightarrow{slow} NO + O \\ O + NO_2 \xrightarrow{fast} NO + O_2 \end{array} \qquad \begin{array}{c} NO_2 + NO_2 \xrightarrow{fast} N_2O_4 \\ N_2O_4 \xrightarrow{slow} NO + NO_3 \\ NO_3 \xrightarrow{fast} NO + O_2 \end{array} \qquad \begin{array}{c} NO_2 + NO_2 \xrightarrow{slow} NO + NO_3 \\ NO_3 \xrightarrow{fast} NO + O_2 \end{array} \qquad \begin{array}{c} NO_2 + NO_2 \xrightarrow{slow} NO + NO_3 \\ NO_3 \xrightarrow{fast} NO + O_2 \end{array}$$

- a.) rate = $k[NO_2]$ which is consist with the photochemical rate
- b.) fast step before slow so we assume eq:


$$\begin{split} NO_2 + NO_2 & \xrightarrow{k_1} N_2 O_4 \qquad k_1 [NO_2]^2 = k_{-1} [N_2 O_4] \rightarrow [N_2 O_4] = \frac{k_1}{k_{-1}} [NO_2]^2 \\ N_2 O_4 & \xrightarrow{k_2} NO + NO_3 \qquad rate = k_2 [N_2 O_4] = k_2 \frac{k_1}{k_{-1}} [NO_2]^2 \end{split}$$

therefore this mechanism is consistent with the thermal rate c.) rate = $k[NO_2]^2$ which is also consistent with the thermal rate

• 14.7 Catalysis

- How can we change the rate of a chemical reaction? we can use a catalyst
- defn: a species that lowers the activation energy of a chemical reaction and does not undergo any permanent chemical change
- it is not present in the overall reaction expression
- it is not present in the rate law
- it must be consumed and produced in the elementary steps
 - -- Catalysis of ozone by Cl

Figure 14.21 Chemistry: The Science in Context

Uncatalyzed mechanism - blue line in the figure

step1:
$$O_3 \xrightarrow{hv} O_2 + O$$

step2: $O + O_3 \longrightarrow 2O_2$
 $2O_3 \longrightarrow 3O_2$

 $E_a = 17.7 \text{ kJ/mol}$

Cl Catalyzed mechanism - red line

step1:
$$Cl + O_3 \longrightarrow O_2 + ClO$$

step2: $ClO + O_3 \longrightarrow Cl + 2O_2$
 $2O_3 \longrightarrow 3O_2$
 $E_a = 2.2 \text{ kJ/mol}$

Types of Catalysts

-- homogeneous catalyst: is one that exists in the same phase as the reactants

-- heterogeneous catalyst: is one that is not in the same phase as the reactants